Deriving a Priori Co-occurrence Probability Estimates for Object Recognition from Social Networks and Text Processing
نویسندگان
چکیده
Certain components in images can be recognized with high accuracy, for example, backgrounds such as leaves, grass, snow, sky, water. These components provide the human eye with context for identifying items in the foreground. Likewise for the machine, the identification of background should help in the recognition of foreground objects. But, in this case, the computer needs explicit lists of object and background co-occurrence probabilities. We examine two ways of deriving estimates of these a priori object co-occurrence probabilities: using an online social network of people storing annotated images, FlickR; and using variations on co-occurrence frequencies in natural language text. We show that the object co-occurrence probabilities derived from both sources are very similar. The possibility of using non-image derived semantic knowledge drawn from text processing for object recognition opens up possibilities of mining a priori probabilities for a much wider class of objects than those found in manually annotated collections.
منابع مشابه
Design and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملروش جدید متنکاوی برای استخراج اطلاعات زمینه کاربر بهمنظور بهبود رتبهبندی نتایج موتور جستجو
Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...
متن کاملAn Empirical Study of the Occurrence and Co-Occurrence of Named Entities in Natural Language Corpora
Named Entities (NEs) that occur in natural language text are important especially due to the advent of social media, and they play a critical role in the development of many natural language technologies. In this paper, we systematically analyze the patterns of occurrence and co-occurrence of NEs in standard large English news corpora providing valuable insight for the understanding of the corp...
متن کاملارائه یک روش جدید بازیابی اطلاعات مناسب برای متون حاصل از بازشناسی گفتار
In this article a pre-processing method is introduced which is applicable in speech recognized texts retrieval task. We have a text corpus, t generated from a speech recognition system and a query as inputs, to search queries in these documents and find relevant documents. A basic problem in a typical speech recognized text is some error percentage in recognition. This, results erroneously ass...
متن کاملRecognizing multiple objects based on co-occurrence of categories
Most previous methods for generic object recognition explicitly or implicitly assume that an image contains objects from a single category, although objects from multiple categories often appear together in an image. In this paper, we present a novel method for object recognition that explicitly deals with objects of multiple categories coexisting in an image. Furthermore, our proposed method a...
متن کامل